"Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled out daily in high schools."
--1921 New York Times editorial about Robert Goddard's revolutionary rocket work.

"Correction: It is now definitely established that a rocket can function in a vacuum. The 'Times' regrets the error."
NY Times, July 1969.

— New York Times

Feed aggregator

Rare mutation that causes short stature may shed light on ageing

New Scientist Space - Cosmology - Fri, 04/26/2024 - 12:00pm
The genetic variant, which causes people to be insensitive to growth hormone, may also protect people from heart disease
Categories: Astronomy

Rare mutation that causes short stature may shed light on ageing

New Scientist Space - Space Headlines - Fri, 04/26/2024 - 12:00pm
The genetic variant, which causes people to be insensitive to growth hormone, may also protect people from heart disease
Categories: Astronomy

Earth’s Mini-Moon Linked to Farside Lunar Crater

Sky & Telescope Magazine - Fri, 04/26/2024 - 11:56am

Researchers might have located the birthplace of 469219 Kamo‘oalewa, a small asteroid that has been described as Earth’s “mini-moon.”

The post Earth’s Mini-Moon Linked to Farside Lunar Crater appeared first on Sky & Telescope.

Categories: Astronomy

NASA Grant Brings Students at Underserved Institutions to the Stars

NASA - Breaking News - Fri, 04/26/2024 - 11:45am

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater) Julia Chavez examines an experiment within an oxygen-free chamber at NASA’s Jet Propulsion Laboratory in March. Chavez is one of several students from California State University, Los Angeles who are interning at JPL’s Origins and Habitability Lab.NASA/JPL-Caltech Cathy Trejo (right) shows off a tube filled with pebbles designed to mimic Martian regolith. During experiments, fluid is flushed through the tube many times, giving JPL astrobiology interns like Trejo and Julia Chaves (left) the chance to study how chemicals may have interacted with water on Mars billions of years ago.NASA/JPL-Caltech

At the agency’s Jet Propulsion Laboratory, interns from Cal State LA are learning key skills studying the origins of life.

What does wastewater management in Los Angeles have to do with the search for life on Mars? Eduardo Martinez certainly didn’t make the connection when he was pursuing a master’s in civil engineering. Not at first. Then his professor pointed him toward an internship opportunity at NASA’s Jet Propulsion Laboratory for astrobiology, the study of life’s origins and the possibility of life beyond Earth.

That professor, Arezoo Khodayari of California State University, Los Angeles, helped Martinez understand the chemistry common to both fields. Soon, Martinez saw that just as phosphorous, nitrogen, and other chemicals in wastewater can fuel algal blooms in the ocean, they can potentially provide energy for microbial life on other planets.

Interns working in JPL’s Origins and Habitability Lab grow fingerlike mineral structures like the one shown here to simulate oceans on early Earth — and possibly other planets. By studying how these structures form in the lab, scientists hope to learn more about potential life-creating chemical reactions. NASA/JPL-Caltech

“Once I got a taste of planetary science, I knew I needed more,” said Martinez, who did the internship while finishing his degree at Cal State LA, where more than 70% of students are Latino and few have historically participated in NASA research. “If not for JPL, I would have stopped with my master’s.” Now he’s pursuing a doctorate in geosciences at the University of Nevada, Las Vegas.

The inspiration that connects both fields lies at the core of a new NASA grant. Khodayari and Laurie Barge, who runs JPL’s Origins and Habitability Laboratory, have received funding for up to six paid JPL internships over two years. The intent is to help develop the next generation of space-minded scientists from the students at Cal State LA.

The grant — one of 11 recently awarded to emerging research universities by NASA’s Science Mission Directorate Bridge Program — helps underrepresented students learn more about astrobiology and perform NASA-sponsored research.

“As a large employer in Southern California, we have a duty to invest in our local communities,” Barge said of JPL’s role in the effort. “It makes NASA and its science more accessible to everyone.”

JPL’s Laurie Barge (far right) and California State University, Los Angeles’ Arezoo Khodayari (second from left) have collaborated for 10 years to bring interns to Barge’s astrobiology lab. JPL’s Jessica Weber (second from right) is also an astrobiologist in the lab; Julia Chavez (far left) and Cathy Trejo (center) are interns.NASA/JPL-Caltech Building Community

Barge and Khodayari have been informally collaborating for 10 years, designing experiments to try to answer questions in their respective fields. Of the four Cal State LA interns Barge has hosted so far, two — including Martinez — have been lead authors on published research papers.

“It is a great accomplishment to publish in a prestigious, peer-reviewed journal, especially as the first author,” Khodayari said. “It’s inspiring to see students from Cal State LA, which is primarily a teaching institution, provided research opportunities that result in these kinds of journal publications.”

She notes that many of her students work multiple jobs, so a paid internship means they can focus entirely on their studies without sacrificing essential income. And, Khodayari added, “they get exposure to a field far from their reality.”

Tools and Skills

In Barge’s lab, dark, fingerlike mineral structures grow in beakers of cloudy liquid meant to simulate oceans on early Earth — and possibly on other planets. By studying how these structures form in the lab, scientists like Barge hope to learn more about the potential life-creating chemical reactions that take place around similar structures, called chimneys, that develop on the ocean floor around hydrothermal vents.

“We learned so much in Laurie’s lab,” said Erika Flores, Barge’s first Cal State LA intern. “Not only are you working independently on your own projects, you’re collaborating with other interns and even other divisions at JPL.”

The middle of five children, Flores was the first in her family to graduate from high school. She initially attended University of California, Berkeley but felt isolated. After returning home, she earned her bachelor’s degree and began studying with Khodayari at Cal State LA.

Although she decided not to become a planetary scientist – “I considered it, but I didn’t want to spend another five years on a Ph.D.; I was ready to get a job” – Flores credits the JPL internship with helping her overcome a case of impostor syndrome. Equipped with a master’s that she completed during her internship, she now works for the Los Angeles County Sanitation Districts, overseeing 13 pumping plants that route wastewater to treatment plants.

Interplanetary Connections

Like Flores, current Cal State LA intern Cathy Trejo wants to improve the world through clean water. She’s studying to be an environmental engineer, with a focus beyond wastewater.

But she was excited to see the parallels between Earth-bound science and planetary science during her internship. Learning to use mass spectrometers has even inspired her. NASA’s Curiosity Mars rover has a mass spectrometer, the Sample Analysis at Mars instrument, that measures the composition of different gases.

“Understanding the instruments we use on Mars has helped me better understand how we study chemistry here on Earth,” Trejo said.

She is fascinated that cumbersome lab instruments can be miniaturized to be taken to other planets, and that scientists are beginning to miniaturize similar instruments that could identify pollutants at Superfund sites.

Barge isn’t giving up hope that Trejo will stick with planetary science, but she’s just happy to help a budding scientist develop. “I hope these student research opportunities offer an appreciation for planetary exploration and how our work at NASA relates to important questions in other fields,” she said.

News Media Contacts

Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov

Karen Fox / Alise Fisher
NASA Headquarters, Washington
301-286-6284 / 202 358-2546
karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov

2024-050      

Share Details Last Updated Apr 26, 2024 Related Terms Explore More 3 min read Four STEM Enhancement in Earth Science Interns Conduct Research in Microgravity

The STEM Enhancement in Earth Science (SEES) Summer Intern Program is a nationally competitive STEM…

Article 2 months ago
4 min read Former STEM Enhancement in Earth Science Interns Receive Prestigious Awards

The STEM Enhancement in Earth Science (SEES) Summer Intern Program is a nationally competitive STEM…

Article 3 months ago
6 min read NASA Puts Next-Gen Exoplanet-Imaging Technology to the Test Article 3 months ago Keep Exploring Discover Related Topics

Missions

Humans in Space

Climate Change

Solar System

Categories: NASA

Start of the first Ariane 6 launch campaign

ESO Top News - Fri, 04/26/2024 - 11:30am
Categories: Astronomy

Trajectory Reverse Engineering 

NASA - Breaking News - Fri, 04/26/2024 - 11:16am

A strategy for transferring spacecraft trajectories between flight mechanics tools, called Trajectory Reverse Engineering (TRE), has been developed[1]. This innovative technique has been designed to be generic, enabling its application between any pair of tools, and to be resilient to the differences found in the dynamical and numerical models unique to each tool. The TRE technique was developed as part of the NESC study, Flight Mechanics Analysis Tools Interoperability and Component Sharing, to develop interfaces to support interoperability between several of NASA’s institutional flight mechanics tools.  

The development of space missions involves multiple design tools, requiring the transfer of trajectories between them—a task that demands a large amount of trajectory data such as frames, states, state and time parametrizations, and dynamical and numerical models. This is a tedious and time-consuming task that is not always effective, particularly on complex dynamics where small variations in the models can cause trajectories to diverge in the reconstruction process.   

The TRE strategy is a trajectory-sharing process that is agnostic to the models used and performed through a common object: the spacecraft and planet kernels (SPK), developed at JPL Navigation and Ancillary Information Facility. The use of this common object aims to lay the groundwork for a global flight mechanics tool interoperability system (Figure 1). 

Figure 1. A) Interoperability between flight mechanics tools using standardized trajectory structures. B) Traditional specific tool-to-tool interface design.  

An SPK file serves as a container object, representing a trajectory as a 6D invariant structure in phase-space, agnostic to gravitational environments, fidelity models, or numerical representation of the system. A judicious kernel scan is used to recover the trajectory in any new tool, with the minimum (or no) information from the generating source. Impulsive maneuvers can be extracted in the form of velocity discontinuities, finite burns can be detected as variations on the energy of the system, and natural bodies conforming the trajectory universe can be directly read from the kernel.  

States or control points are found at predetermined time intervals or strategic points along the trajectory (e.g., periapsis, apoapsis, flybys closest approach), which are then used to reconstruct the trajectory timeline. The trajectory can be propagated forward in time using the selected set of control points. Due to the discrepancy between tool models, small or large discontinuities might appear between the integrated legs, which can be smoothed by the implementation of a multiple-shooting algorithm (Figure 2).  

Figure 2. Multiple-shooting algorithm, utilizing strategic control points and a forward-backward propagation scheme. 

The TRE strategy was successfully implemented for Monte and Copernicus in the form of Python scripts (examples of reconstructed trajectories from SPK for each of these tools are shown in Figure 3). Through an optional user input file, a user can configure their specific problem. User-defined constraints are also possible, but their implementation would depend on the specific tool. The benefits of this effort include cost reduction through the sharing of capabilities, acceleration of the turnaround process involving various analysis tools at different stages of mission development, improved design solutions through multi-tool mission designs, and a reduction in development redundancy. 

Reference: 

  1. Restrepo, R. L., “Trajectory Reverse Engineering: A General Strategy for Transferring Trajectories Between Flight Mechanics Tools” AAS 23-312, January 2023. 
Figure 3. Future and flown missions reconstructions using Copernicus (Europa Clipper, Cassini) and Monte (HLS, Voyager 2) from SPK obtained from the Horizons System database at https://ssd.jpl.nasa.gov/horizons/. 

For information, contact Heather Koehler heather.koehler@nasa.gov and Ricardo L. Restrepo ricardo.l.restrepo@jpl.nasa.gov. 

Categories: NASA

Early Star Wars Day Lego deal: $130 off UCS Razor Crest

Space.com - Fri, 04/26/2024 - 11:10am
This is the way to celebrate Star Wars Day in style, with the 6187-piece Lego Ultimate Collector Series Razor Crest, now $130 off
Categories: Astronomy

Alpacas are the only mammals known to directly inseminate the uterus

New Scientist Space - Cosmology - Fri, 04/26/2024 - 11:00am
When alpacas mate, males deposit sperm directly into the uterus, a reproductive strategy not confirmed in any other mammals
Categories: Astronomy

Alpacas are the only mammals known to directly inseminate the uterus

New Scientist Space - Space Headlines - Fri, 04/26/2024 - 11:00am
When alpacas mate, males deposit sperm directly into the uterus, a reproductive strategy not confirmed in any other mammals
Categories: Astronomy

5 sci-fi movies that weren't great but still deserve a sequel

Space.com - Fri, 04/26/2024 - 11:00am
We're constantly talking about good movies that deserve a sequel, but what about the divisive ones that, while not great, had cool ideas worth building upon?
Categories: Astronomy

NASA begins delivering 1st Artemis Moon Trees to be planted across United States

Space.com - Fri, 04/26/2024 - 10:30am
The first woman slated to launch to the moon has delivered one of the first trees grown from seeds recently flown there. NASA astronaut Christina Koch presented an "Artemis 1 Moon Tree."
Categories: Astronomy

Japan’s Lunar Lander Survives its Third Lunar Night

Universe Today - Fri, 04/26/2024 - 10:22am

Space travel and exploration was never going to be easy. Failures are sadly all too common but it’s wonderful to see missions exceed expectations. The Japanese Space Agency’s SLIM lunar lander was only supposed to survive a single day but it’s survived three brutal, harsh lunar nights and is still going. The temperatures plummet to -170C at night and the lander was never designed to operate into the night. Even sat upside down on the surface it’s still sending back pictures and data. 

The Japanese agency’s lunar lander known as SLIM (Smart Lander for Investigating the Moon) began its lunar journey on 19 January 2024 when it touched down on the surface of the Moon. Its mission was to test the lunar landing technology and to collect data about the surface geology. 

An artist’s conception shows Japan’s SLIM lander in its upended position on the lunar surface. (Credit: JAXA)

Unfortunately, soon after landing it became clear that the probe had landed at a strange angle, leaning forwards, resting on its face. The orientation of the solar panels was all wrong and it meant they could not generate as much electricity as expected allowing it to operate for a few hours just after dawn and just before sunset. 

Of course it is important to note that a day on the Moon lasts many days compared to a day here on Earth and so, the first night for SLIM began on 31 January. Surprisingly, SLIM survived the first long night where temperatures to -170 degrees. SLIM was never designed to survive the cold harsh nights on the Moon so it was with some surprise that it powered back up successfully on the 15 February. 

The operations team for SLIM were disbanded in March but to their surprise, after the second lunar night, a signal was received again. Surpassing everyones expectations it seems SLIM wasn’t going to give up yet and still sending images. The lander was even picked up after its second night by cameras on board the Chandrayaan-2 orbiter as it flew over. 

Just a few days ago on Wednesday 24 January, JAXA, the Japanese Aerospace Exploration Agency announced it had survived a third night on the freezing lunar surface. Using the plucky littler lander which measures just 1.5m x 1.5m x 2m, the agency hope to be able to learn more about the origin of the Moon by analysing the surface geology.

One of the fascinating elements to the mission was the pinpoint landing technology that was being tested. On descent, the lander would be able to recognise the craters using technology that has been developed by facial recognition systems. Using the data, it would be able to determine its location with pinpoint accuracy and perform a touch down with an accuracy of 100m. The landing was successfully accurate albeit slightly wobbly leaving the lander in a strange orientation. 

source : Japan’s moon lander wasn’t built to survive a week long lunar night. It’s still going after 3

The post Japan’s Lunar Lander Survives its Third Lunar Night appeared first on Universe Today.

Categories: Astronomy

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA - Breaking News - Fri, 04/26/2024 - 10:12am

2 min read

NASA’s Hubble Pauses Science Due to Gyro Issue The Hubble Space Telescope as seen from the space shuttle Atlantis (STS-125) in May 2009, during the fifth and final servicing of the orbiting observatory.NASA

NASA is working to resume science operations of the agency’s Hubble Space Telescope after it entered safe mode April 23 due to an ongoing gyroscope (gyro) issue. Hubble’s instruments are stable, and the telescope is in good health.

The telescope automatically entered safe mode when one of its three gyroscopes gave faulty readings. The gyros measure the telescope’s turn rates and are part of the system that determines which direction the telescope is pointed. While in safe mode, science operations are suspended, and the telescope waits for new directions from the ground.

This particular gyro caused Hubble to enter safe mode in November after returning similar faulty readings. The team is currently working to identify potential solutions. If necessary, the spacecraft can be re-configured to operate with only one gyro, with the other remaining gyro placed in reserve . The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing fluctuations. Hubble uses three gyros to maximize efficiency, but could continue to make science observations with only one gyro if required.

NASA anticipates Hubble will continue making groundbreaking discoveries, working with other observatories, such as the agency’s James Webb Space Telescope, throughout this decade and possibly into the next.

Launched in 1990, Hubble has been observing the universe for more than three decades and recently celebrated its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries and visit nasa.gov/hubble for updates.

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight CenterGreenbelt, MD
claire.andreoli@nasa.gov

Share Details Last Updated Apr 26, 2024 EditorAndrea GianopoulosLocationGoddard Space Flight Center Related Terms Keep Exploring Discover More Topics From NASA Hubble Space Telescope

Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.

Juno

NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

Science News

James Webb Space Telescope

Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…

Categories: NASA

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

NASA - Breaking News - Fri, 04/26/2024 - 10:10am

NASA partners with commercial companies to provide safe, reliable, and cost-effective transportation of cargo and crew members to and from the International Space Station. A platform for long-duration research in microgravity, the station has operated continuously for more than 23 years, its crew members conducting a broad range of technology demonstrations and thousands of experiments in many scientific fields.

Human Transportation

NASA’s Commercial Crew Program provides systems capable of carrying astronauts to low Earth orbit and the space station through industry partners who design, build, test, and operate these systems. Crew members providing hands-on operation of scientific research is one of the unique advantages of the orbiting laboratory. Human operators monitor events on Earth in real time, swap out experiment samples, observe results firsthand, assess when conditions are favorable for data collection, and troubleshoot and otherwise manage and maintain scientific activities. Crew members also pack experiment samples to return to the ground for detailed analysis.

NASA commercial partner Boeing is launching NASA astronauts Butch Wilmore and Suni Williams on a Crew Flight Test of its Starliner spacecraft in May 2024. The spacecraft launches to the space station on a United Launch Alliance Atlas V rocket from Cape Canaveral Space Force Station, Florida. This mission paves the way for NASA to certify the Starliner spacecraft for long-duration rotation missions to the space station.

Crew members Butch Wilmore and Suni Williams in the Boeing Starliner simulator at NASA’s Johnson Space Center in Houston.NASA/Robert Markowitz

SpaceX, another commercial partner, conducted an uncrewed Demo-1 flight in March 2019, and in May 2020, the Demo-2 flight carried NASA astronauts Robert Behnken and Douglas Hurley to the space station. The first operational mission, Crew-1, launched in November 2020. Since then, SpaceX has regularly sent crews to the orbiting laboratory for scientific missions. The Dragon spacecraft launches on the company’s Falcon 9 rocket from NASA’s Kennedy Space Center in Florida.

Crew-1 launches to the International Space Station in a Dragon spacecraft on Sunday, Nov. 15, 2020.NASA/Joel Kowsky

NASA’s commercial crew flights have significantly increased the amount of crew time available for research and expanded the potential for commercial use of the orbiting laboratory. More crew members mean more time for scientific research and technology demonstrations, and ultimately, more scientific results. To date, results generated by space station research range from improvements in the development of pharmaceuticals to better disaster response, improved materials manufacturing, advances in robotics, bioprinting human tissue, and more.

NASA astronaut Megan McArthur works with experiment samples with JAXA astronaut Akihiko Hoshide.NASA

By enabling regular rotation of crew members, commercial crew flights also contribute to research on how long-duration missions affect human health, helping to prepare for exploration missions to the Moon and Mars.

Cargo Resupply

Through NASA’s Commercial Resupply Services program, partners SpaceX and Northrop Grumman fly cargo to the space station on rockets and spacecraft the companies developed.

Northrop Grumman transports scientific investigations and cargo on its Cygnus spacecraft. The company’s first resupply mission launched in 2013 and it had reached 20 missions by January 2024. When a Cygnus departs from the space station, it disposes of several thousand pounds of waste that burn up during re-entry into Earth’s atmosphere.

A Northrop Grumman Cygnus approaches the International Space Station as they orbit above the south Pacific Ocean.NASA

Departing Cygnus spacecraft also provide safe platforms to perform research that could create hazards if conducted on the space station, such as the Spacecraft Fire Safety Experiments (Saffire). This eight-year series of investigations studied flame growth and material flammability in space. The experiments were ignited in the cargo vehicles after their departure from the station and before re-entry to Earth, avoiding potential risk to the space station and its crew.

SpaceX launched its first Dragon cargo mission in October 2012 and by March 2024, had sent 30 commercial resupply services missions to the space station. Dragon is a reusable spacecraft that also returns samples from scientific investigations conducted on the space station. Beginning in 2021, these return flights started splashing down near Kennedy rather than in the Pacific Ocean. This capability allows scientists quick access to samples to make additional observations and analyses before the effects of gravity fully kick back in. Many researchers also conduct more in-depth analysis later in their home labs.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

A SpaceX Dragon splashes down in the Atlantic Ocean off the Florida coast. Credit: NASA

NASA also is working with Sierra Space to develop the Dream Chaser spacecraft to transport cargo to and from the space station. The reusable, winged spacecraft is designed to use commercial runways and its cargo is subject to reduced gravitational forces on the return flight. Sierra Space conducted an autonomous atmospheric test flight in 2017.

These commercial partnerships build a strong American commercial space industry, as NASA focuses on developing the next generation of rockets and spacecraft for deep space missions and to put the first woman and first person of color on the Moon.

Melissa Gaskill
International Space Station Research Communications Team
NASA’s Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

Keep Exploring Discover More Topics

Latest News from Space Station Research

Commercial Crew Program

Commercial Resupply

Low Earth Orbit Economy

Categories: NASA

'Aliens vs. Avengers' pits Marvel superheroes against acid-spewing xenomorphs

Space.com - Fri, 04/26/2024 - 10:00am
A preview of Marvel Comics' "Aliens vs. Avengers" limited series, which is coming this summer.
Categories: Astronomy

As Bird Flu Spreads through Cows, Is Pasteurized Milk Safe to Drink?

Scientific American.com - Fri, 04/26/2024 - 10:00am

H5N1 influenza virus particles have been detected in commercially sold milk, but it’s not clear how the virus is spreading in cattle or whether their milk could infect humans

Categories: Astronomy

Week in images: 22-26 April 2024

ESO Top News - Fri, 04/26/2024 - 9:10am

Week in images: 22-26 April 2024

Discover our week through the lens

Categories: Astronomy

Asteroid that broke up over Berlin was fastest-spinning one ever seen

New Scientist Space - Cosmology - Fri, 04/26/2024 - 9:00am
Before it shattered over Germany, the asteroid 2024 BX1 was clocked rotating once every 2.6 seconds – the fastest spin we have observed
Categories: Astronomy

Asteroid that broke up over Berlin was fastest-spinning one ever seen

New Scientist Space - Space Headlines - Fri, 04/26/2024 - 9:00am
Before it shattered over Germany, the asteroid 2024 BX1 was clocked rotating once every 2.6 seconds – the fastest spin we have observed
Categories: Astronomy

People Keep Secrets Because They Overestimate Harsh Judgments

Scientific American.com - Fri, 04/26/2024 - 9:00am

Research suggests that people tend to exaggerate how critically they will be viewed if they reveal negative information about themselves to others

Categories: Astronomy