Feed aggregator
Mosquitoes Found in Iceland for the First Time amid Climate Change
Bird flu surges and a government shutdown collide, complicating efforts to track cases and protect flocks.
The Quest for Corrosion Proof Satellites
Satellites orbiting Earth face a constant assault from highly reactive single atom of oxygen which are created when solar radiation splits oxygen molecules in the upper atmosphere. These atoms don't just create drag that pulls spacecraft back to Earth, they also bind to satellite surfaces, causing corrosion that limits most satellites to roughly five year lifespans. A team of engineers at the University of Texas at Dallas have been developing a protective coating using techniques borrowed from microelectronics and optical manufacturing to counter the effects. The process the team have developed enables satellites to withstand conditions even harsher than those found in space. If successful, this coating could not only extend satellite lifetimes but enable spacecraft to operate in very low Earth orbit, a region currently too hostile for most missions.
A Fibre Optic Breakthrough Reveals the Universe in Sharper Detail
Astronomers have discovered a clever way to make a single telescope capture sharper details than should be physically possible. The technique involves feeding starlight through a special optical fibre called a photonic lantern. Anyone else thinking of a certain glowing green lantern from a movie? Alas not, instead of special powers, it splits light according to its spatial patterns like separating a musical chords into individual notes. The researchers achieved resolution that has never been achieved before without linking multiple telescopes together. When they tested the technique on a star 162 light-years away, they not only proved it works but stumbled upon an unexpected discovery, that the star's surrounding gas disc is mysteriously lopsided.
The Tycho Supernova's Hidden Secret
The famous Tycho supernova of 1572, witnessed by Danish astronomer Tycho Brahe, didn't explode in empty space as has been assumed. New analysis reveals it detonated inside a planetary nebula, the ghostly shell of gas expelled by an earlier dying star. The evidence lies in two "ear" shaped structures that were sticking out from the remnant's main shell, matching similar features in three other supernovae previously identified as explosions within planetary nebulae. This discovery supports the "core-degenerate" model where a white dwarf star merges with a companion star's core, with the explosion occurring hundreds of thousands of years later while the nebula remains intact. Most strikingly, if Tycho follows this pattern, it suggests that 70-90% of normal Type Ia supernovae may actually be supernovae inside planetary nebulae!