"Professor Goddard does not know the relation between action and reaction and the need to have something better than a vacuum against which to react. He seems to lack the basic knowledge ladled out daily in high schools."
--1921 New York Times editorial about Robert Goddard's revolutionary rocket work.

"Correction: It is now definitely established that a rocket can function in a vacuum. The 'Times' regrets the error."
NY Times, July 1969.

— New York Times

Feed aggregator

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/30/2024 - 8:00pm

What happens if you ascend this


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/30/2024 - 8:00pm

It's back.


Categories: Astronomy, NASA

Chamaeleon I Molecular Cloud

APOD - Thu, 05/30/2024 - 8:00pm

Chamaeleon I Molecular Cloud


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/30/2024 - 8:00pm

What's happened to our Sun?


Categories: Astronomy, NASA

Manicouagan Impact Crater from Space

APOD - Thu, 05/30/2024 - 8:00pm

Orbiting 400 kilometers above Quebec, Canada, planet Earth, the


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/30/2024 - 8:00pm

Star formation can be messy.


Categories: Astronomy, NASA

<p><a href="https://apod.nasa.gov/apod

APOD - Thu, 05/30/2024 - 8:00pm

Why does a cloudy moon sometimes appear colorful?


Categories: Astronomy, NASA

Starliner launch: When is Boeing testing its crewed space capsule?

New Scientist Space - Space Headlines - Thu, 05/30/2024 - 5:36pm
Boeing's Starliner capsule had a helium leak in one of its thrusters, but it is still scheduled to launch on 1 June for its first crewed flight to the International Space Station
Categories: Astronomy

Elusive medium-size black holes may form in dense 'birthing nests'

Space.com - Thu, 05/30/2024 - 5:00pm
A new simulation has shown elusive intermediate-mass black holes may form in dense globular clusters of millions of tightly packed stars, thanks to a chaotic collision chain.
Categories: Astronomy

Ep 721: Free-Floating Planets

Astronomy Cast - Thu, 05/30/2024 - 4:28pm

Most of the exoplanets we’ve found are around stars, where they belong. But a few have been found free-floating in interstellar space. The evidence is growing that there are a lot of them out there, maybe even more than planets with stars. How do they form and how can we learn more about them?

Categories: Astronomy

How NASA's OSIRIS-APEX asteroid probe survived its 1st close encounter with the sun

Space.com - Thu, 05/30/2024 - 4:00pm
OSIRIS-APEX emerged unscathed from its first of six close brushes with the sun, thanks to some clever engineering.
Categories: Astronomy

Bioelectronic patch uses living bacteria to treat psoriasis in mice

New Scientist Space - Space Headlines - Thu, 05/30/2024 - 3:00pm
One of the first bioelectronic devices to combine living bacteria with sensors has successfully improved healthy skin regeneration in mice with psoriasis
Categories: Astronomy

Bioelectronic patch uses living bacteria to treat psoriasis in mice

New Scientist Space - Cosmology - Thu, 05/30/2024 - 3:00pm
One of the first bioelectronic devices to combine living bacteria with sensors has successfully improved healthy skin regeneration in mice with psoriasis
Categories: Astronomy

James Webb Space Telescope spots the 2 earliest galaxies ever seen (image)

Space.com - Thu, 05/30/2024 - 3:00pm
James Webb Space Telescope has spotted the two earliest and most distant galaxies ever seen. One, JADES-GS-z14-0, is a massive and bright galaxy that existed just 300 million years after the Big Bang.
Categories: Astronomy

Pluto Has an Ocean of Liquid Water Surrounded by a 40-80 km Ice Shell

Universe Today - Thu, 05/30/2024 - 2:57pm

On July 14th, 2015, the New Horizons spacecraft conducted the first-ever flyby of Pluto, which once was (and to many, still is) the ninth planet of the Solar System. While the encounter was brief, the stunning images and volumes of data it obtained revealed a stunningly vibrant and dynamic world. In addition to Pluto’s heart, floating ice hills, nitrogen icebergs, and nitrogen winds, the New Horizons data also hinted at the existence of an ocean beneath Pluto’s icy crust. This effectively made Pluto (and its largest moon, Charon) members of the “Ocean Worlds” club.

Almost a decade after that historic encounter, scientists are still making discoveries from New Horizons data. In a new paper, planetary scientists Alex Nguyen and Dr. Patrick McGovern used mathematical models and images to learn more about the possible ocean between Pluto’s icy surface and its silicate and metallic core. According to their analysis, they determined that Pluto’s ocean is located beneath a surface shell measuring 40 to 80 km (25 to 50 mi), an insulating layer thick enough to ensure that an interior ocean remains liquid.

Nguyen is a graduate student in Earth, environmental, and planetary sciences in Arts & Sciences at Washington University in St. Louis (WUSTL), while Dr. McGovern is a Senior Staff Scientist with the Lunar and Planetary Institute (LPI) in Houston. Their paper, “The role of Pluto’s ocean’s salinity in supporting nitrogen ice loads within the Sputnik Planitia basin,” recently appeared in the journal Icarus. The study is part of Nguyen’s Ph.D. research at Washington University, where he is an Olin Chancellor’s Fellow and a National Science Foundation Graduate Research Fellow.

This cutaway image of Pluto shows a section through the area of Sputnik Planitia, with dark blue representing a subsurface ocean and light blue for the frozen crust. Artwork by Pam Engebretson, courtesy of UC Santa Cruz.

For decades, planetary scientists assumed Pluto was far too cold to support an interior ocean. Pluto orbits well beyond the Solar System’s “Frost Line,” the boundary beyond which volatile elements (water, carbon dioxide, ammonia, etc.) become solid. With an average surface temperature of -229 °C (-380°F), even nitrogen and methane become as solid as rock. As Nguyen indicated in a recent interview with The Source (WUSTL’s news site), “Pluto is a small body. It should have lost almost all of its heat shortly after it was formed, so basic calculations would suggest that it’s frozen solid to its core.”

But thanks to New Horizons, scientists were presented with multiple lines of evidence that suggest Pluto likely has an interior ocean. This includes cryovolcanoes, such as those observed on Ceres, Europa, Ganymede, Enceladus, Titan, Triton, and other “Ocean Worlds.” While the existence of this ocean is still subject to debate, the theory is gaining acceptance to the point that it is considered a very real possibility. For their study, Nguyen and McGovern created mathematical models to explain the cracks and bulges in the ice covering Pluto’s Sputnik Planitia Basin.

Their results indicate that an ocean could exist beneath an icy shell 40 to 80 km (25 to 50 mi) thick, which would be sufficient to ensure that Pluto could maintain a liquid water ocean in its interior despite surface conditions. They also calculated the likely density or salinity of the ocean based on the surface features and determined that Pluto’s ocean could be up to 8% denser than Earth’s oceans. This salinity level would make Pluto’s ocean comparable to the Great Salt Lake, the Dead Sea, and other high-salinity bodies of water on Earth.

According to Nguyen, any variations in this density (greater or lower) would be evident from the cracks and fractures in the Sputnik Platina Basin. “We estimated a sort of Goldilocks zone where the density and shell thickness is just right,” he said. If the ocean were less dense, the ice shell would collapse, leading to many more fractures in the surface. If it were denser, the ice sheet would be more buoyed, which would be evident from there being fewer fractures. Unfortunately, it could be many decades before another spacecraft reaches Pluto to help confirm these findings. In the meantime, the case for Pluto’s interior ocean grows stronger!

Further Reading: Washington University at St. Louis, Icarus

The post Pluto Has an Ocean of Liquid Water Surrounded by a 40-80 km Ice Shell appeared first on Universe Today.

Categories: Astronomy

Where are All the Primordial Black Holes?

Universe Today - Thu, 05/30/2024 - 2:37pm

The earliest black holes in the Universe called primordial black holes (PBHs), are strong contenders to help explain why the Universe is heavier than it looks. There’s only one problem: these miniature monsters haven’t exactly been observed—yet. But, when astronomers do find them, they might turn out to be part of the Universe’s dark matter component.

Primordial black holes are one of several types of highly massive objects thought to exist in the Universe. We already know about stellar-mass black holes. They form during the deaths of hugely massive stars and generally end up containing up to dozens of solar masses. Then there are the supermassive black holes, embedded in the hearts of most galaxies. They sequester up to millions of solar masses.

The intermediate-mass black holes occupy the middle of the “black hole” spectrum. They’re another hot topic in black hole research circles. Appropriately enough, the masses of these black holes are between their stellar and supermassive counterparts. All these types of massive objects can collide with each other to grow bigger black holes. That generates gravitational waves that can be detected. The “ping” of each gravitational wave tells scientists a great deal about the objects colliding, including their masses.

How we might discover primordial black holes and help solve the dark matter mystery. Credit: ESA Understanding Primordial Black Holes in Context of Cosmic History

While astronomers search for PHBs, others are looking to explain why they might be part of the dark matter component of the Universe. In addition, they could explain the origin of binary black holes detected in gravitational wave observations.

A team of researchers at the University of Tokyo examined the “problem” of PBHs. Their work suggests that there should be far fewer of these objects than current models show. But, nobody knows how many existed back then. So, astronomers search them out using gravitational wave observatories. Their discovery should open a window on conditions in the early Universe when PBH formed.

These miniature ones are fascinating to think about. “Many researchers feel they are a strong candidate for dark matter, but there would need to be plenty of them to satisfy that theory,” said graduate student and team member Jason Kristiano. “They are interesting for other reasons too, as since the recent innovation of gravitational wave astronomy, there have been discoveries of binary black hole mergers, which can be explained if PBHs exist in large numbers. But despite these strong reasons for their expected abundance, we have not seen any directly, and now we have a model which should explain why this is the case.”

Modeling the Existence of Primordial Black Holes

The big question about PHBs: do (or did) they exist? And, can they be part of the dark matter component of the Universe? To answer that, Kristiano and his advisor Jun’ichi Yokoyama, searched through models of PBH formation. The best ones do not agree with the observed conditions of the leftover light fingerprint of the Big Bang. That’s called the cosmic microwave background (CMB). This is important, since PBHs formed in very early epochs of cosmic history, soon after the Big Bang. So, the team used the best model of PBH formation and applied quantum field theory to bring the model into alignment with reality.

Yokoyama explained the background behind their work. “At the beginning, the universe was incredibly small, much smaller than the size of a single atom. Cosmic inflation rapidly expanded that by 25 orders of magnitude. At that time, waves traveling through this tiny space could have had relatively large amplitudes but very short wavelengths. What we have found is that these tiny but strong waves can translate to otherwise inexplicable amplification of much longer waves we see in the present CMB,” said Yokoyama.

“We believe this is due to occasional instances of coherence between these early short waves, which can be explained using quantum field theory, the most robust theory we have to describe everyday phenomena such as photons or electrons. While individual short waves would be relatively powerless, coherent groups would have the power to reshape waves much larger than themselves. This is a rare instance of where a theory of something at one extreme scale seems to explain something at the opposite end of the scale.”

From Fluctuations to Miniature Black Holes

Those early small-scale fluctuations Yokohama describes affect some of the larger-scale fluctuations in the cosmic microwave background. Researchers can use measurements of wavelengths in the CMB to constrain the extent of corresponding wavelengths in the early Universe. That also puts some limits on any other phenomena that rely on the shorter, stronger wavelengths. And this is where the PBHs come back in.

“It is widely believed that the collapse of short but strong wavelengths in the early universe is what creates primordial black holes,” said Kristiano. “Our study suggests there should be far fewer PBHs than would be needed if they are indeed a strong candidate for dark matter or gravitational wave events.”

The next step relies on gravitational wave observatories and other types of observations. LIGO in the U.S., Virgo in Italy and KAGRA in Japan, are cooperating in observations aimed at finding the first PHBs. The results should help refine the ideas from Yokoyama’s team about PHBs and dark matter.

For More Information

The Case of the Missing Black Holes
Constraining Primordial Black Hole Formation from Single-Field Inflation
Note on the Bispectrum and One-loop corrections in Single-field Inflation with Primordial Black Hole Formation

The post Where are All the Primordial Black Holes? appeared first on Universe Today.

Categories: Astronomy

NASA Releases New High-Quality, Near Real-Time Air Quality Data

NASA - Breaking News - Thu, 05/30/2024 - 2:07pm
4 Min Read NASA Releases New High-Quality, Near Real-Time Air Quality Data Artist illustration of the satellite Intelsat 40e. NASA's TEMPO instrument launched into geostationary orbit 22,236 miles above Earth's equator in April 2023 as a payload on the satellite. Credits: Maxar Technologies

NASA has made new data available that can provide air pollution observations at unprecedented resolutions – down to the scale of individual neighborhoods. The near real-time data comes from the agency’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument, which launched last year to improve life on Earth by revolutionizing the way scientists observe air quality from space. This new data is available from the Atmospheric Science Data Center at NASA’s Langley Research Center in Hampton, Virginia.

“TEMPO is one of NASA’s Earth observing instruments making giant leaps to improve life on our home planet,” said NASA Administrator Bill Nelson. “NASA and the Biden-Harris Administration are committed to addressing the climate crisis and making climate data more open and available to all. The air we breathe affects everyone, and this new data is revolutionizing the way we track air quality for the benefit of humanity.”

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

The TEMPO instrument measured elevated levels of nitrogen dioxide (NO2) from a number of different areas and emission sources throughout the daytime on March 28, 2024. Yellow, red, purple, and black clusters represent increased levels of pollutants from TEMPO’s data and show drift over time. Credit: Trent Schindler/NASA’s Scientific Visualization Studio

The TEMPO mission gathers hourly daytime scans of the atmosphere over North America from the Atlantic Ocean to the Pacific Coast, and from Mexico City to central Canada. The instrument detects pollution by observing how sunlight is absorbed and scattered by gases and particles in the troposphere, the lowest layer of Earth’s atmosphere.

“All the pollutants that TEMPO is measuring cause health issues,” said Hazem Mahmoud, science lead at NASA Langley’s Atmospheric Science Data Center. “We have more than 500 early adopters using these datasets right away. We expect to see epidemiologists and health experts using this data in the near future. Researchers studying the respiratory system and the impact of these pollutants on people’s health will find TEMPO’s measurements invaluable.”

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

NO2 levels are elevated along major traffic corridors including I-35 in Texas with the highest levels between 9:00 a.m. and 12:00 p.m. Elevated NO2 levels are shown across cities including Houston, Dallas, and San Antonio, with the highest levels persisting across Houston from morning to evening. Credit: Trent Schindler/NASA’s Scientific Visualization Studio

An early adopter program has allowed policymakers and other air quality stakeholders to understand the capabilities and benefits of TEMPO’s measurements. Since October 2023, the TEMPO calibration and validation team has been working to evaluate and improve TEMPO data products. 

We have more than 500 early adopters that will be using these datasets right away.

hazem mahmoud

NASA Data Scientist

“Data gathered by TEMPO will play an important role in the scientific analysis of pollution,” said Xiong Liu, senior physicist at the Smithsonian Astrophysical Observatory and principal investigator for the mission. “For example, we will be able to conduct studies of rush hour pollution, linkages of diseases and health issues to acute exposure of air pollution, how air pollution disproportionately impacts underserved communities, the potential for improved air quality alerts, the effects of lightning on ozone, and the movement of pollution from forest fires and volcanoes.” 

Measurements by TEMPO include air pollutants such as nitrogen dioxide, formaldehyde, and ground-level ozone.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

High NO2 levels associated with prescribed burns are seen popping up across East Texas, Oklahoma, Louisiana, Arkansas, and Mississippi, beginning around 1:00 p.m. and extending into the evening. Elevated NO2 levels are visible in cities from El Paso to Memphis.Credit: Trent Schindler/NASA’s Scientific Visualization Studio

“Poor air quality exacerbates pre-existing health issues, which leads to more hospitalizations,” said Jesse Bell, executive director at the University of Nebraska Medical Center’s Water, Climate, and Health Program. Bell is an early adopter of TEMPO’s data.

Bell noted that there is a lack of air quality data in rural areas since monitoring stations are often hundreds of miles apart. There is also an observable disparity in air quality from neighborhood to neighborhood.

“Low-income communities, on average, have poorer air quality than more affluent communities,” said Bell. “For example, we’ve conducted studies and found that in Douglas County, which surrounds Omaha, the eastern side of the county has higher rates of pediatric asthma hospitalizations. When we identify what populations are going to the hospital at a higher rate than others, it’s communities of color and people with indicators of poverty. Data gathered by TEMPO is going to be incredibly important because you can get better spatial and temporal resolution of air quality across places like Douglas County.”

Determining sources of air pollution can be difficult as smoke from wildfires or pollutants from industry and traffic congestion drift on winds. The TEMPO instrument will make it easier to trace the origin of some pollutants.

To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video

TEMPO observes the northerly transport of NO2 from the Permian basin, a large oil and natural gas producing area spanning parts of West Texas and southeastern New Mexico, with the highest levels measured during the morning over the basin. NO2 plumes from coal-fired power plants are visible in the rural areas far west and northwest of Houston and far east of Dallas between 8:00 a.m. and 2:00 p.m.Credit: Trent Schindler/NASA’s Scientific Visualization Studio

“The National Park Service is using TEMPO data to gain new insight into emerging air quality issues at parks in southeast New Mexico,” explained National Park Service chemist, Barkley Sive. “Oil and gas emissions from the Permian Basin have affected air quality at Carlsbad Caverns and other parks and their surrounding communities. While pollution control strategies have successfully decreased ozone levels across most of the United States, the data helps us understand degrading air quality in the region.” 

The TEMPO instrument was built by BAE Systems, Inc., Space & Mission Systems (formerly Ball Aerospace) and flies aboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Ground System, including the Instrument Operations Center and the Science Data Processing Center, are operated by the Smithsonian Astrophysical Organization, part of the Center for Astrophysics | Harvard & Smithsonian.

Read More

To learn more about TEMPO visit: https://nasa.gov/tempo

Facebook logo @NASA@nasalarc @NASA@NASA_Langley Instagram logo @NASA@NASA_Langley Linkedin logo @NASA@company/nasa-langley-research-center Share Details Last Updated May 30, 2024 Related Terms Explore More 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle

NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more.

Article 1 day ago
4 min read NASA’s X-59 Passes Milestone Toward Safe First Flight  Article 2 weeks ago 3 min read 1942: Engine Roars to Life in First Test at Future NASA Glenn Article 3 weeks ago
Categories: NASA

Boeing's Starliner rolls out to pad for June 1 astronaut launch (photos)

Space.com - Thu, 05/30/2024 - 2:00pm
Boeing's Starliner capsule rolled out to the pad today (May 30) ahead of its first-ever astronaut launch, which is scheduled for June 1.
Categories: Astronomy

NASA Updates Coverage for Boeing’s Starliner Launch, Docking

NASA - Breaking News - Thu, 05/30/2024 - 1:59pm
Boeing’s CST-100 Starliner crew ship approaches the International Space Station on the company’s Orbital Flight Test-2 mission before automatically docking to the Harmony module’s forward port.

NASA will provide live coverage of prelaunch and launch activities for the agency’s Boeing Crew Flight Test, which will carry NASA astronauts Butch Wilmore and Suni Williams to and from the International Space Station.

Launch of the ULA (United Launch Alliance) Atlas V rocket and Boeing Starliner spacecraft is targeted for 12:25 p.m. EDT Saturday, June 1, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the forward-facing port of the station’s Harmony module at approximately 1:50 p.m., Sunday, June 2.

Wilmore and Williams will remain at the space station for about a week to test the Starliner spacecraft and its subsystems before NASA works to complete final certification of the transportation system for rotational missions to the orbiting laboratory as part of the agency’s Commercial Crew Program.

NASA, Boeing, and ULA scrubbed the previous launch opportunity on May 6 due to a suspect oxygen relief valve on the Atlas V rocket’s Centaur second stage. Since, teams have removed and replaced the valve, and completed an assessment of Starliner’s performance and redundancy after discovering a small helium leak in the spacecraft’s service module.

As part of the helium leak investigation, NASA and Boeing conducted a follow-on propulsion system assessment to understand potential helium system impacts to some Starliner return scenarios. NASA also completed a Delta-Agency Flight Test Readiness Review on May 29 to evaluate all work performed and flight rationale before proceeding toward launch.

The deadline for media accreditation for in-person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov.

NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations):

Friday, May 31

1 p.m. – Prelaunch briefing with the following participants:

  • NASA Associate Administrator Jim Free
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Dana Weigel, manager, NASA’s International Space Station Program
  • NASA astronaut Mike Fincke
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
  • Gary Wentz, vice president, Government and Commercial Programs, ULA
  • Mark Burger, launch weather officer, 45th Weather Squadron, Cape Canaveral Space Force Station

Coverage of the briefing will stream live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.

Saturday, June 1

8:15 a.m. – Launch coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

12:25 p.m. – Launch

Launch coverage on NASA+ will end shortly after Starliner orbital insertion. NASA Television will provide continuous coverage leading up to docking and through hatch opening and welcome remarks.

2 p.m. – Postlaunch news conference with the following participants:

  • NASA Administrator Bill Nelson
  • Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Dana Weigel, manager, NASA’s International Space Station Program
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
  • Tory Bruno, president and CEO, ULA

Coverage of the postlaunch news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than three hours before the start of the event at ksc-newsroom@mail.nasa.gov.

NASA+ will resume coverage and NASA Television’s public channel will break from in-orbit coverage to carry the postlaunch news conference. Mission operational coverage will continue on NASA Television’s media channel and the agency’s website. Once the postlaunch news conference is complete, NASA+ coverage will end, and mission coverage will continue on both NASA channels.

Sunday, June 2

11:15 a.m. – Arrival coverage resumes on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website.

1:50 p.m. – Targeted docking to the forward-facing port of the station’s Harmony module

3:35 p.m. – Hatch opening

3:55 p.m. – Welcome remarks

5 p.m. – Post-docking news conference at NASA’s Johnson Space Center with the following participants:

  • NASA Associate Administrator Jim Free
  • Steve Stich, manager, NASA’s Commercial Crew Program
  • Dana Weigel, manager, NASA’s International Space Station Program
  • Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing

Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.

All times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date operations information.

Audio Only Coverage

Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA Television launch commentary, will be carried on 321-867-7135.

Launch audio also will be available on Launch Information Service and Amateur Television System’s VHF radio frequency 146.940 MHz and KSC Amateur Radio Club’s UHF radio frequency 444.925 MHz, FM mode, heard within Brevard County on the Space Coast.

Live Video Coverage Prior to Launch

NASA will provide a live video feed of Space Launch Complex-41 approximately 48 hours prior to the planned liftoff of the mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA Television, approximately four hours prior to launch. Once the feed is live, find it on NASA Kennedy’s YouTube: http://youtube.com/kscnewsroom.

NASA Website Launch Coverage

Launch day coverage of the mission will be available on the agency’s website. Coverage will include live streaming and blog updates beginning no earlier than 8:15 a.m., June 1, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.

For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or the Crew Flight Test blog.

Attend Launch Virtually

Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.

Watch, Engage on Social Media

Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Starliner and #NASASocial. You can also stay connected by following and tagging these accounts:

X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @BoeingSpace, @Commercial_Crew

Facebook: NASA, NASAKennedy, ISS, ISS National Lab

Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab

Coverage en Espanol

Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.

Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425;antonia.jaramillobotero@nasa.gov.

NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.

For NASA’s launch blog and more information about the mission, visit:

https://www.nasa.gov/commercialcrew

-end-

Jimi Russell / Claire O’Shea
Headquarters, Washington
202-358-1100
james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov

Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky
Kennedy Space Center, Florida
321-867-2468
steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov

Leah Cheshier
Johnson Space Center, Houston
281-483-5111
leah.d.cheshier@nasa.gov

Categories: NASA

Webb Spots a Starburst

NASA Image of the Day - Thu, 05/30/2024 - 1:08pm
Featured in this new image from the NASA/ESA/CSA James Webb Space Telescope is the dwarf galaxy NGC 4449. This galaxy, also known as Caldwell 21, resides roughly 12.5 million light-years away in the constellation Canes Venatici. NGC 4449 has been forming stars for several billion years, but it is currently experiencing a period of star formation at a much higher rate than in the past. Such unusually explosive and intense star formation activity is called a starburst and for that reason NGC 4449 is known as a starburst galaxy. Starbursts usually occur in the central regions of galaxies, but NGC 4449 displays more widespread star formation activity, and the very youngest stars are observed both in the nucleus and in streams surrounding the galaxy. It's likely that the current widespread starburst was triggered by interaction or merging with a smaller companion; indeed, astronomers think NGC 4449's star formation has been influenced by interactions with several of its neighbors.
Categories: Astronomy, NASA