"Time and space are modes in which we think and not conditions in which we live."

— Albert Einstein

Hubblesite Newscenter

Syndicate content
This news collection compiles news releases and supporting materials published by the Officeof Public Outreach of the Space Telescope Science Institute, to further your knowledge of astronomy. The different news releases are organized by space telecope (Hubble, James Webb, WFIRST, etc.), and different categories (like galaxies, nebulae, planets, stars, etc.).
Updated: 7 hours 12 min ago

NASA's Kepler Witnesses Vampire Star System Undergoing Super-Outburst

Fri, 01/24/2020 - 10:00am

Astronomers searching archival data from NASA's Kepler exoplanet hunting mission identified a previously unknown dwarf nova that underwent a super-outburst, brightening by a factor of 1,600 times in less than a day. While the outburst itself has a theoretical explanation, the slow rise in brightness that preceded it remains a mystery. Kepler's rapid cadence of observations were crucial for recording the entire event in detail.

The dwarf nova system consists of a white dwarf star with a brown dwarf companion. The white dwarf is stripping material from the brown dwarf, sucking its essence away like a vampire. The stripped material forms an accretion disk around the white dwarf, which is the source of the super-outburst. Such systems are rare and may go for years or decades between outbursts, making it a challenge to catch one in the act.

Categories: NASA

NASA's Kepler Witnesses Vampire Star System Undergoing Super-Outburst

Fri, 01/24/2020 - 10:00am

Astronomers searching archival data from NASA's Kepler exoplanet hunting mission identified a previously unknown dwarf nova that underwent a super-outburst, brightening by a factor of 1,600 times in less than a day. While the outburst itself has a theoretical explanation, the slow rise in brightness that preceded it remains a mystery. Kepler's rapid cadence of observations were crucial for recording the entire event in detail.

The dwarf nova system consists of a white dwarf star with a brown dwarf companion. The white dwarf is stripping material from the brown dwarf, sucking its essence away like a vampire. The stripped material forms an accretion disk around the white dwarf, which is the source of the super-outburst. Such systems are rare and may go for years or decades between outbursts, making it a challenge to catch one in the act.

Categories: NASA

Goldilocks Stars Are Best Places to Look for Life

Wed, 01/08/2020 - 3:10pm

To date astronomers have discovered over 4,000 planets orbiting other stars. Statistically, there should be over 100 billion planets in our Milky Way galaxy. They come in a wide range of sizes and characteristics, largely unimagined before exoplanets were first discovered in the mid-1990s. The biggest motivation for perusing these worlds is to find "Genesis II," a planet where life has arisen and evolved beyond microbes. The ultimate payoff would be finding intelligent life off the Earth.

A major step in searching for habitable planets is finding suitable stars that could foster the emergence of complex organisms. Because our Sun has nurtured life on Earth for nearly 4 billion years, conventional wisdom would suggest that stars like it would be prime candidates. But stars like our Sun represent only about 10% of the Milky Way population. What's more, they are comparatively short-lived. Our Sun is halfway through its estimated 10 billion-year lifetime.

Complex organisms arose on Earth only 500 million years ago. And, the modern form of humans has been here only for the blink of an eye on cosmological timescales: 200,000 years. The future of humanity is unknown. But what is for certain is that Earth will become uninhabitable for higher forms of life in a little over 1 billion years, as the Sun grows warmer and desiccates our planet.

Therefore, stars slightly cooler than our Sun — called orange dwarfs — are considered better hang-outs for advanced life. They can burn steadily for tens of billions of years. This opens up a vast timescape for biological evolution to pursue an infinity of experiments for yielding robust life forms. And, for every star like our Sun there are three times as many orange dwarfs in the Milky Way.

The only type of star that is more abundant are red dwarfs. But these are feisty little stars. They are so magnetically active they pump out 500 times as much radiation in the form of X-rays and ultraviolet light as our Sun does. Planets around these stars take a beating. They would be no place to call home for organisms like us.

An emerging idea, bolstered by stellar surveys performed by Hubble and other telescopes, is that the orange dwarfs are "Goldilocks stars" — not too hot, not too cool, and above all, not too violent to host life-friendly planets over a vast horizon of cosmic time.

Categories: NASA

Goldilocks Stars Are Best Places to Look for Life

Wed, 01/08/2020 - 3:10pm

To date astronomers have discovered over 4,000 planets orbiting other stars. Statistically, there should be over 100 billion planets in our Milky Way galaxy. They come in a wide range of sizes and characteristics, largely unimagined before exoplanets were first discovered in the mid-1990s. The biggest motivation for perusing these worlds is to find "Genesis II," a planet where life has arisen and evolved beyond microbes. The ultimate payoff would be finding intelligent life off the Earth.

A major step in searching for habitable planets is finding suitable stars that could foster the emergence of complex organisms. Because our Sun has nurtured life on Earth for nearly 4 billion years, conventional wisdom would suggest that stars like it would be prime candidates. But stars like our Sun represent only about 10% of the Milky Way population. What's more, they are comparatively short-lived. Our Sun is halfway through its estimated 10 billion-year lifetime.

Complex organisms arose on Earth only 500 million years ago. And, the modern form of humans has been here only for the blink of an eye on cosmological timescales: 200,000 years. The future of humanity is unknown. But what is for certain is that Earth will become uninhabitable for higher forms of life in a little over 1 billion years, as the Sun grows warmer and desiccates our planet.

Therefore, stars slightly cooler than our Sun — called orange dwarfs — are considered better hang-outs for advanced life. They can burn steadily for tens of billions of years. This opens up a vast timescape for biological evolution to pursue an infinity of experiments for yielding robust life forms. And, for every star like our Sun there are three times as many orange dwarfs in the Milky Way.

The only type of star that is more abundant are red dwarfs. But these are feisty little stars. They are so magnetically active they pump out 500 times as much radiation in the form of X-rays and ultraviolet light as our Sun does. Planets around these stars take a beating. They would be no place to call home for organisms like us.

An emerging idea, bolstered by stellar surveys performed by Hubble and other telescopes, is that the orange dwarfs are "Goldilocks stars" — not too hot, not too cool, and above all, not too violent to host life-friendly planets over a vast horizon of cosmic time.

Categories: NASA

Cosmic Magnifying Glasses Yield Independent Measure of Universe's Expansion

Wed, 01/08/2020 - 2:55pm

People use the phrase "Holy Cow" to express excitement. Playing with that phrase, researchers from an international collaboration developed an acronym—H0LiCOW—for their project's name that expresses the excitement over their Hubble Space Telescope measurements of the universe's expansion rate.

Knowing the precise value for how fast the universe expands is important for determining the age, size, and fate of the cosmos. Unraveling this mystery has been one of the greatest challenges in astrophysics in recent years.

Members of the H0LiCOW (H0 Lenses in COSMOGRAIL's Wellspring) team used Hubble and a technique that is completely independent of any previous method to measure the universe's expansion, a value called the Hubble constant.

This latest value represents the most precise measurement yet using the gravitational lensing method, where the gravity of a foreground galaxy acts like a giant magnifying lens, amplifying and distorting light from background objects. This latest study did not rely on the traditional "cosmic distance ladder" technique to measure accurate distances to galaxies by using various types of stars as "milepost markers." Instead, the researchers employed the exotic physics of gravitational lensing to calculate the universe's expansion rate.

The researchers' result further strengthens a troubling discrepancy between the expansion rate calculated from measurements of the local universe and the rate as predicted from background radiation in the early universe, a time before galaxies and stars even existed. The new study adds evidence to the idea that new theories may be needed to explain what scientists are finding.

Categories: NASA

Hubble Detects Smallest Known Dark Matter Clumps

Wed, 01/08/2020 - 2:40pm

When searching for dark matter, astronomers must go on a sort of "ghost hunt." That's because dark matter is an invisible substance that cannot be seen directly. Yet it makes up the bulk of the universe's mass and forms the scaffolding upon which galaxies are built. Dark matter is the gravitational "glue" that holds galaxies as well as galaxy clusters together. Astronomers can detect its presence indirectly by measuring how its gravity affects stars and galaxies.

The mysterious substance is not composed of the same stuff that makes up stars, planets, and people. That material is normal "baryonic" matter, consisting of electrons, protons, and neutrons. However, dark matter might be some sort of unknown subatomic particle that interacts weakly with normal matter.

A popular theory holds that dark matter particles don't move very fast, which makes it easier for them to clump together. According to this idea, the universe contains a broad range of dark matter concentrations, from small to large.

Astronomers have detected dark matter clumps around large- and medium-sized galaxies. Now, using Hubble and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known.

The researchers searched for small concentrations of dark matter in the Hubble data by measuring how the light from faraway quasars is affected as it travels through space. Quasars are the bright black-hole-powered cores of very distant galaxies. The Hubble images show that the light from these quasars images is warped and magnified by the gravity of massive foreground galaxies in an effect called gravitational lensing. Astronomers used this lensing effect to detect the small dark matter clumps. The clumps are located along the telescope’s line of sight to the quasars, as well as in and around the foreground lensing galaxies.

Categories: NASA

Hubble Detects Smallest Known Dark Matter Clumps

Wed, 01/08/2020 - 2:40pm

When searching for dark matter, astronomers must go on a sort of "ghost hunt." That's because dark matter is an invisible substance that cannot be seen directly. Yet it makes up the bulk of the universe's mass and forms the scaffolding upon which galaxies are built. Dark matter is the gravitational "glue" that holds galaxies as well as galaxy clusters together. Astronomers can detect its presence indirectly by measuring how its gravity affects stars and galaxies.

The mysterious substance is not composed of the same stuff that makes up stars, planets, and people. That material is normal "baryonic" matter, consisting of electrons, protons, and neutrons. However, dark matter might be some sort of unknown subatomic particle that interacts weakly with normal matter.

A popular theory holds that dark matter particles don't move very fast, which makes it easier for them to clump together. According to this idea, the universe contains a broad range of dark matter concentrations, from small to large.

Astronomers have detected dark matter clumps around large- and medium-sized galaxies. Now, using Hubble and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known.

The researchers searched for small concentrations of dark matter in the Hubble data by measuring how the light from faraway quasars is affected as it travels through space. Quasars are the bright black-hole-powered cores of very distant galaxies. The Hubble images show that the light from these quasars images is warped and magnified by the gravity of massive foreground galaxies in an effect called gravitational lensing. Astronomers used this lensing effect to detect the small dark matter clumps. The clumps are located along the telescope’s line of sight to the quasars, as well as in and around the foreground lensing galaxies.

Categories: NASA

Hubble Detects Smallest Known Dark Matter Clumps

Wed, 01/08/2020 - 2:40pm

When searching for dark matter, astronomers must go on a sort of "ghost hunt." That's because dark matter is an invisible substance that cannot be seen directly. Yet it makes up the bulk of the universe's mass and forms the scaffolding upon which galaxies are built. Dark matter is the gravitational "glue" that holds galaxies as well as galaxy clusters together. Astronomers can detect its presence indirectly by measuring how its gravity affects stars and galaxies.

The mysterious substance is not composed of the same stuff that makes up stars, planets, and people. That material is normal "baryonic" matter, consisting of electrons, protons, and neutrons. However, dark matter might be some sort of unknown subatomic particle that interacts weakly with normal matter.

A popular theory holds that dark matter particles don't move very fast, which makes it easier for them to clump together. According to this idea, the universe contains a broad range of dark matter concentrations, from small to large.

Astronomers have detected dark matter clumps around large- and medium-sized galaxies. Now, using Hubble and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known.

The researchers searched for small concentrations of dark matter in the Hubble data by measuring how the light from faraway quasars is affected as it travels through space. Quasars are the bright black-hole-powered cores of very distant galaxies. The Hubble images show that the light from these quasars images is warped and magnified by the gravity of massive foreground galaxies in an effect called gravitational lensing. Astronomers used this lensing effect to detect the small dark matter clumps. The clumps are located along the telescope’s line of sight to the quasars, as well as in and around the foreground lensing galaxies.

Categories: NASA

NASA's Hubble Surveys Gigantic Galaxy

Sun, 01/05/2020 - 3:15pm

Galaxies are like snowflakes. Though the universe contains innumerable galaxies flung across time and space, no two ever look alike. One of the most photogenic is the huge spiral galaxy UGC 2885, located 232 million light-years away in the northern constellation, Perseus. It's a whopper even by galactic standards. The galaxy is 2.5 times wider than our Milky Way and contains 10 times as many stars, about 1 trillion. This galaxy has lived a quiescent life by not colliding with other large galaxies. It has gradually bulked up on intergalactic hydrogen to make new stars at a slow and steady pace over many billions of years. The galaxy has been nicknamed "Rubin's galaxy," after astronomer Vera Rubin (1928 – 2016). Rubin used the galaxy to look for invisible dark matter. The galaxy is embedded inside a vast halo of dark matter. The amount of dark matter can be estimated by measuring its gravitational influence on the galaxy's rotation rate.

Categories: NASA

NASA's Hubble Surveys Gigantic Galaxy

Sun, 01/05/2020 - 3:15pm

Galaxies are like snowflakes. Though the universe contains innumerable galaxies flung across time and space, no two ever look alike. One of the most photogenic is the huge spiral galaxy UGC 2885, located 232 million light-years away in the northern constellation, Perseus. It's a whopper even by galactic standards. The galaxy is 2.5 times wider than our Milky Way and contains 10 times as many stars, about 1 trillion. This galaxy has lived a quiescent life by not colliding with other large galaxies. It has gradually bulked up on intergalactic hydrogen to make new stars at a slow and steady pace over many billions of years. The galaxy has been nicknamed "Rubin's galaxy," after astronomer Vera Rubin (1928 – 2016). Rubin used the galaxy to look for invisible dark matter. The galaxy is embedded inside a vast halo of dark matter. The amount of dark matter can be estimated by measuring its gravitational influence on the galaxy's rotation rate.

Categories: NASA

NASA's Great Observatories Help Astronomers Build a 3D Visualization of Exploded Star

Sun, 01/05/2020 - 2:30pm

In the year 1054 AD, Chinese sky watchers witnessed the sudden appearance of a "new star" in the heavens, which they recorded as six times brighter than Venus, making it the brightest observed stellar event in recorded history. This "guest star," as they described it, was so bright that people saw it in the sky during the day for almost a month. Native Americans also recorded its mysterious appearance in petroglyphs.

Observing the nebula with the largest telescope of the time, Lord Rosse in 1844 named the object the "Crab" because of its tentacle-like structure. But it wasn't until the 1900s that astronomers realized the nebula was the surviving relic of the 1054 supernova, the explosion of a massive star.

Now, astronomers and visualization specialists from the NASA's Universe of Learning program have combined the visible, infrared, and X-ray vision of NASA's Great Observatories to create a three-dimensional representation of the dynamic Crab Nebula.

The multiwavelength computer graphics visualization is based on images from the Chandra X-ray Observatory and the Hubble and Spitzer space telescopes. The approximately four-minute video dissects the intricate nested structure that makes up this stellar corpse, giving viewers a better understanding of the extreme and complex physical processes powering the nebula. The powerhouse "engine" energizing the entire system is a pulsar, a rapidly spinning neutron star, the super-dense crushed core of the exploded star. The tiny dynamo is blasting out blistering pulses of radiation 30 times a second with unbelievable clockwork precision.

Categories: NASA

Simulated Image Demonstrates the Power of NASA's Wide Field Infrared Survey Telescope

Sun, 01/05/2020 - 2:00pm

NASA's upcoming Wide Field Infrared Survey Telescope (WFIRST), scheduled for launch in the mid-2020s, will have the power to survey the sky 1,000 times faster than the Hubble Space Telescope, with Hubble-quality detail, in the near-infrared.

A simulated image of a 34,000-light-year swath across our neighboring galaxy Andromeda showcases WFIRST’s unique detector configuration, expansive field of view and high resolution. The image was generated using data collected by Hubble, and shows the red and infrared light of more than 50 million individual stars in Andromeda, as they would appear with WFIRST.

WFIRST is designed to address key questions across a wide range of topics, including dark energy, exoplanets, and general astrophysics spanning from our solar system to the most distant galaxies in the observable universe. WFIRST is expected to amass more than 4 petabytes of information per year, all of which will be non-proprietary and immediately accessible to the public.

The simulated image, which represents the staggering amount of data that could be captured in a single pointing over just 90 minutes, demonstrates the power of WFIRST for examining large-scale structures that are otherwise too time-consuming to image. Astronomers are currently using simulations like this to plan future observations.

Categories: NASA