It is clear to everyone that astronomy at all events compels the soul to look upwards, and draws it from the things of this world to the other.

— Plato

Hubblesite Newscenter

Syndicate content
This news collection compiles news releases and supporting materials published by the Officeof Public Outreach of the Space Telescope Science Institute, to further your knowledge of astronomy. The different news releases are organized by space telecope (Hubble, James Webb, WFIRST, etc.), and different categories (like galaxies, nebulae, planets, stars, etc.).
Updated: 3 hours 43 min ago

Interstellar Comet 2I/Borisov Swings Past the Sun

Thu, 12/12/2019 - 1:00pm

When astronomers see something in the universe that at first glance seems like one-of-a-kind, it's bound to stir up a lot of excitement and attention. Enter comet 2I/Borisov. This mysterious visitor from the depths of space is the first identified comet to arrive here from another star. We don't know from where or when the comet started heading toward our Sun, but it won't hang around for long. The Sun's gravity is slightly deflecting its trajectory, but can't capture it because of the shape of its orbit and high velocity of about 100,000 miles per hour.

Telescopes around the world have been watching the fleeting visitor. Hubble has provided the sharpest views as the comet skirts by our Sun. Since October the space telescope has been following the comet like a sports photographer following horses speeding around a racetrack. Hubble revealed that the heart of the comet, a loose agglomeration of ices and dust particles, is likely no more than about 3,200 feet across, about the length of nine football fields. Though comet Borisov is the first of its kind, no doubt there are many other comet vagabonds out there, plying the space between stars. Astronomers will eagerly be on the lookout for the next mysterious visitor from far beyond.

Categories: NASA

Hubble Studies Gamma-Ray Burst with the Highest Energy Ever Seen

Wed, 11/20/2019 - 1:00pm

The Star Wars film trilogies are known best for the iconic "Death Star," an alien battle station that shoots out beams of directed energy powerful enough to blow up planets. The real universe makes much more extraordinary beams that can unleash in a few seconds as much energy as our sun will generate over its 10-billion-year lifetime. These beams blast out of imploding stars at over 99% the speed of light. They carry most of their energy in the form of gamma-rays—a lethal form of radiation that can penetrate bone and tear apart living cells. If our planet got caught in a nearby gamma-ray burst (GRB) the atmosphere would be largely stripped away.

The current record for a super-powerful GRB goes to a January 2019 outburst. The eruption came from a galaxy located so far away that the explosion actually happened 5 billion years ago. When the diluted radiation finally arrived at Earth, it was seen by our satellite sentries that monitor the sky for such fireworks: NASA’s Swift and Fermi telescopes, in addition to the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes on the Canary islands.

Hubble can't detect gamma-rays, but its sharp vision was used to see where the burst came from. The host galaxy of the GRB is actually one of a pair of colliding galaxies. The galaxy interactions may have contributed to the blast.

Categories: NASA

A Weakened Black Hole Allows Its Galaxy To Awaken

Mon, 11/18/2019 - 1:00pm

Supermassive black holes, weighing millions or even billions of times our Sun's mass, are still only a tiny fraction of the mass of the galaxies they inhabit. But in some cases, the central black hole is the tail wagging the dog. It seems that black holes can run hot or cold when it comes to either enhancing or squelching star birth inside a cluster of galaxies.

Typically, giant black holes, pumping out energy via jets, keep interstellar gas too warm to condense and form stars. Now, astronomers have found a cluster of galaxies, called the Phoenix cluster, where stars are forming at a furious rate because of the black hole's influence. This stellar turboboost is apparently linked to less energetic jets from a central black hole that do not pump up the gas temperature. Instead, the gas loses energy as it glows in X-rays. The gas cools to where it can form large numbers of stars at a breathtaking rate. Where our Milky Way forms one star per year on average, newborn stars are popping out of this cool gas at a rate of about 500 solar masses per year in the Phoenix cluster.

Unraveling this mystery required the combined power of NASA's Hubble Space Telescope, NASA's Chandra X-ray Observatory, and the Very Large Array (VLA) radio observatory near Socorro, New Mexico.

The VLA radio data reveals jets blasting out from the vicinity of the central black hole. These jets inflated bubbles in the hot gas that are detected in X-rays by Chandra. Hubble resolves bright blue filaments of newborn stars in cavities between the hot jet and gas clouds. As the black hole has grown more massive and more powerful, its influence has been increasing.

Categories: NASA