"The large-scale homogeneity of the universe makes it very difficult to believe that the structure of the universe is determined by anything so peripheral as some complicated molecular structure on a minor planet orbiting a very average star in the outer suburbs of a fairly typical galaxy."

— Steven Hawking

Astronomy

NASA’s Artemis astronauts will try to grow plants on the moon

New Scientist Space - Space Headlines - Wed, 03/27/2024 - 4:18pm
Three experiments have been selected to fly to the moon alongside NASA’s Artemis III astronauts, all designed to help with future long-term stays on the moon and eventually Mars
Categories: Astronomy

Overlooked Apollo data from the 1970s reveals huge record of 'hidden' moonquakes

Space.com - Wed, 03/27/2024 - 3:24pm
A reanalysis of 50-year-old Apollo mission data long abandoned by NASA has revealed 22,000 previously unrecognized moonquakes, almost tripling the known number of seismic lunar events.
Categories: Astronomy

A Single Grain of Ice Could Hold Evidence of Life on Europa and Enceladus

Universe Today - Wed, 03/27/2024 - 2:58pm

The Solar System’s icy ocean moons are primary targets in our search for life. Missions to Europa and Enceladus will explore these moons from orbit, improving our understanding of them and their potential to support life. Both worlds emit plumes of water from their internal oceans, and the spacecraft sent to both worlds will examine those plumes and even sample them.

New research suggests that evidence of life in the moons’ oceans could be present in just a single grain of ice, and our spacecraft can detect it.

It’s all because of improvements to scientific instruments, particularly the mass spectrometer. Mass spectrometers can identify unknown chemical compounds by their molecular weights and can also quantify known compounds. These instruments are now powerful enough to detect a tiny amount of cellular material.

“For the first time, we have shown that even a tiny fraction of cellular material could be identified by a mass spectrometer onboard a spacecraft,” said Fabian Klenner, a University of Washington postdoctoral researcher in Earth and space sciences. Klenner is also the lead author of a new paper in the journal Science Advances. “Our results give us more confidence that using upcoming instruments, we will be able to detect lifeforms similar to those on Earth, which we increasingly believe could be present on ocean-bearing moons.”

The new research is “How to identify cell material in a single ice grain emitted from Enceladus or Europa.

Mass spectrometers have been around for decades but have improved rapidly in recent years. Researchers working on developing more powerful mass spectrometry have won two Nobel Prizes: one for Physics in 1989 and one for Chemistry in 2002. The 2002 prize is of particular interest in this research because it was awarded for the development of techniques that allowed mass spectrometers to detect biological macromolecules, including proteins.

Now, spacecraft and rovers often have mass spectrometers in their suite of instruments. NASA’s Curiosity rover has one, and so will the Europa Clipper, which will be sent on its way to Europa in October 2024. It’ll arrive there in 2030, so this research makes its anticipated arrival even more intriguing.

We know that Enceladus and Europa emit cryovolcanic plumes of material from their concealed oceans. The Cassini mission observed these eruptions coming from Enceladus’ south-polar region. Eventually, the spacecraft came within 50 km of the icy moon and passed directly through the plumes. Using its mass spectrometer, it detected carbon dioxide, water, various hydrocarbons, and organic chemicals.

A false-colour image of the plumes erupting from Enceladus. Image Credit: NASA/ESA

“Enceladus has got warmth, water and organic chemicals, some of the essential building blocks needed for life,” said Dennis Matson in 2008, a Cassini project scientist at NASA’s JPL at the time.

Europa also has cryovolcanic plumes. The Hubble Space Telescope spotted them in 2012, and then scientists working with data from the Galileo mission said that data supported the discovery.

This composite image shows suspected plumes of water vapour erupting at the 7 o’clock position off the limb of Jupiter’s moon Europa. The plumes, photographed by Hubble’s Imaging Spectrograph, were seen in silhouette as the moon passed in front of Jupiter. Hubble’s ultraviolet sensitivity allowed for the features, rising over 160 kilometres above Europa’s icy surface, to be discerned. The Hubble data were taken on January 26, 2014. The image of Europa, superimposed on the Hubble data, is assembled from data from the Galileo and Voyager missions. Image Credit: NASA/HST/STScI

When the Europa Clipper reaches its destination in 2030, it’ll employ an instrument called SUDA, the SUrface Dust Analyzer. SUDA will use mass spectrometry to detect chemicals in Europa’s plumes. This research suggests that SUDA should be able to detect cellular material on a single ice grain if it’s there.

This artist’s illustration shows what Europa might be like. Warm water containing organic material could make its way from the ocean, through cracks in the ice, out into space on ice grains via cryovolcanic plumes. Image Credit: NASA

This research is based on a common bacterium found in Alaskan waters. It’s called Sphingopyxis alaskensis, and the researchers chose it because it’s so small. It also lives in cold environments and can survive on few nutrients. It’s possible that its small size and other attributes make it an analogue for any life that may exist in Europa’s ocean.

In their experiments, the researchers simulated how mass spectrometry could detect organic material in a tiny ice grain. The results showed that along with detecting expected non-organic chemicals, mass spectrometry also detected amino acids from Sphingopyxis alaskensis.

“They are extremely small, so they are, in theory, capable of fitting into ice grains that are emitted from an ocean world like Enceladus or Europa,” Klenner said.

This figure from the research shows the cationic mass spectrum of the cell material equivalent to one S. alaskensis cell in a 15-?m-diameter H2O droplet. Although the mass spectrum is dominated by water, sodium-water, potassium-water, and ammonium-water clusters, amino acids, together with other metabolic intermediates from the S. alaskensis cell, can be identified. The spectrum is an average of 224 individual spectra. Image Credit: Klenner et al. 2024.

The search for life at Europa may come down to individual grains of ice. That’s partly because different molecules end up in different ice grains. If biological material is concentrated in ice grains, then it makes sense to detect individual ones rather than averaging results over a larger sample of ice.

But will there actually be biological material in ice grains? How would it get there?

On Earth, bacterial cells are encased in protective lipid membranes. That means that they sometimes form a surface layer on the ocean or other bodies of water. If the same is true of any life that may exist on Europa or Enceladus, then these bacteria can form a skin on the surface of the ocean. On these icy moons, gas bubbles that rise from the ocean and burst at the surface could incorporate cellular matter from the bacteria into the plumes.

The drawing on the left shows Enceladus and its ice-covered ocean, with cracks near the south pole that are believed to penetrate through the icy crust. The middle panel shows where life could thrive: at the top of the water, in a proposed thin layer (shown yellow) like on Earth’s oceans. The right panel shows that as gas bubbles rise and pop, bacterial cells could get lofted into space with droplets that then become the ice grains that were detected by Cassini. A mass spectrometer should be able to detect cellular matter on a single ice grain. Image Credit: European Space Agency

“We here describe a plausible scenario for how bacterial cells can, in theory, be incorporated into icy material that is formed from liquid water on Enceladus or Europa and then gets emitted into space,” Klenner said.

This is where mass spectrometry and SUDA come in. SUDA is much more powerful than earlier mass spectrometers, and has the capability to detect the fatty acids and lipids that may be launched into the plumes. While detecting actual DNA might seem like the holy grail, Klenner disagrees.

“For me, it is even more exciting to look for lipids, or for fatty acids, than to look for building blocks of DNA, and the reason is because fatty acids appear to be more stable,” Klenner said.

In their paper, the researchers state their results clearly. “Our experiments show that even if only 1% of a cell’s constituents are contained in a 15-micrometre ice grain (or one cell in a 70-micrometre-diameter grain), the bacterial signatures would be apparent in the spectral data,” they explain.

This is good news for the Europa Clipper and its SUDA instrument.

“With suitable instrumentation, such as the SUrface Dust Analyzer on NASA’s Europa Clipper space probe, it might be easier than we thought to find life, or traces of it, on icy moons,” said senior author Frank Postberg, a professor of planetary sciences at the Freie Universität Berlin. “If life is present there, of course, and cares to be enclosed in ice grains originating from an environment such as a subsurface water reservoir.”

The post A Single Grain of Ice Could Hold Evidence of Life on Europa and Enceladus appeared first on Universe Today.

Categories: Astronomy

Supermassive black hole’s mysterious hiccups' likely caused by neighboring black hole's 'punches'

Space.com - Wed, 03/27/2024 - 2:00pm
A black hole may be punching through the disk of gas and dust surrounding a supermassive black hole, causing its giant neighbor to "hiccup."
Categories: Astronomy

This robot predicts when you're going to smile – and smiles back

New Scientist Space - Cosmology - Wed, 03/27/2024 - 2:00pm
An AI-powered robot named Emo watches people’s facial expressions and tries to match them, in an effort to make robots more relatable
Categories: Astronomy

This robot predicts when you're going to smile – and smiles back

New Scientist Space - Space Headlines - Wed, 03/27/2024 - 2:00pm
An AI-powered robot named Emo watches people’s facial expressions and tries to match them, in an effort to make robots more relatable
Categories: Astronomy

Why you should always yell at the ref - according to science

New Scientist Space - Cosmology - Wed, 03/27/2024 - 2:00pm
Feedback is inspired by new research suggesting that the decision-making of umpires at baseball games was influenced by criticism from spectators
Categories: Astronomy

Some of the greatest cosmic discoveries have come about by accident

New Scientist Space - Cosmology - Wed, 03/27/2024 - 2:00pm
The universe has been surprising us ever since we first looked into the cosmic darkness. We should embrace serendipity in science, says Chris Lintott
Categories: Astronomy

Space Oddities review: A lively insider account of particle physics

New Scientist Space - Cosmology - Wed, 03/27/2024 - 2:00pm
CERN scientist Harry Cliff takes us to the heart of developments in cosmology and particle physics in his engaging, accessible guide
Categories: Astronomy

Why you should always yell at the ref - according to science

New Scientist Space - Space Headlines - Wed, 03/27/2024 - 2:00pm
Feedback is inspired by new research suggesting that the decision-making of umpires at baseball games was influenced by criticism from spectators
Categories: Astronomy

Some of the greatest cosmic discoveries have come about by accident

New Scientist Space - Space Headlines - Wed, 03/27/2024 - 2:00pm
The universe has been surprising us ever since we first looked into the cosmic darkness. We should embrace serendipity in science, says Chris Lintott
Categories: Astronomy

Space Oddities review: A lively insider account of particle physics

New Scientist Space - Space Headlines - Wed, 03/27/2024 - 2:00pm
CERN scientist Harry Cliff takes us to the heart of developments in cosmology and particle physics in his engaging, accessible guide
Categories: Astronomy

'Vampire' neutron star blasts are related to jets traveling at near-light speeds

Space.com - Wed, 03/27/2024 - 1:39pm
Scientists have measured for the first time the speed of jets launched by neutron star "vampires" as they feast on victim stars. The breakthrough connects these jets to thermonuclear blasts.
Categories: Astronomy

Tragic Baltimore bridge collapse aftermath seen from space (satellite photos)

Space.com - Wed, 03/27/2024 - 1:30pm
Satellites looked down upon the aftermath of a deadly bridge collapse in Baltimore, Maryland that occurred after a massive cargo ship struck one of the bridge's pillars.
Categories: Astronomy

Global Warming Is Slowing the Earth’s Rotation

Scientific American.com - Wed, 03/27/2024 - 1:15pm

Drastic polar ice melt is slowing Earth’s rotation, counteracting a speedup from the planet’s liquid outer core. The upshot is that we might need to subtract a leap second for the first time ever within the decade

Categories: Astronomy

NASA is super stoked for the 2024 total solar eclipse and hopes you are, too.

Space.com - Wed, 03/27/2024 - 1:00pm
NASA is using the total solar eclipse on April 8 to increase public knowledge of science while encouraging safety during what could be a once-in-a-lifetime event.
Categories: Astronomy

Information session on the outcome of ESA's 323rd Council

ESO Top News - Wed, 03/27/2024 - 1:00pm
Video: 00:38:30

ESA Member States met in Paris, France, for the 323rd session of the ESA Council on 26 and 27 March 2024.

Watch the replay of the information session in which ESA Director General Josef Aschbacher and ESA Council Chair Renato Krpoun share the outcome of the meeting. They gave an update to media about ESA's vision for the European space sector by 2040 and the status of actions provided in the roadmap for the implementation of the Resolution on present and future European Space Transportation.  

They also addressed the progress made in addressing critical challenges faced by ESA in preparation for the next Ministerial Council in 2025. This includes the establishment of the Independent Project Management Authority (IPMA), updating procurement and geo-return rules, service procurement and agreements with Member States. 

Categories: Astronomy

NASA Reveals its Planetary Science Goals for Artemis III

Universe Today - Wed, 03/27/2024 - 12:28pm

If all goes well, NASA’s Artemis III mission will bring humans back to the Moon as early as 2026, the first time since the Apollo 17 crew departed in 1972. It won’t be a vacation, though, as astronauts have an enormous amount of science to do, especially in lunar geology. A team from NASA recently presented their planetary science goals and objectives for Artemis III surface activities, which will guide the fieldwork the astronauts will carry out on the lunar surface.

The Artemis III Geology Team presented their priorities at the Lunar and Planetary Science Conference in March 2024. In addition, NASA also announced their choices for the first science instruments that astronauts will deploy on the surface of the Moon during Artemis III.

The landing site hasn’t been chosen yet, but it will be within 6 degrees of latitude from the South Pole. These instruments will collect valuable scientific data about the lunar environment, the lunar interior, and how to sustain a long-duration human presence on the Moon, which will help prepare NASA to send astronauts to Mars.

“Artemis marks a bold new era of exploration, where human presence amplifies scientific discovery. With these innovative instruments stationed on the Moon’s surface, we’re embarking on a transformative journey that will kick-start the ability to conduct human-machine teaming – an entirely new way of doing science,” said NASA Deputy Administrator Pam Melroy. “These three deployed instruments were chosen to begin scientific investigations that will address key Moon to Mars science objectives.”

Two of the three main Artemis science goals and the instruments deal with understanding the Moon itself. The Lunar Environment Monitoring Station (LEMS) is a compact, autonomous seismometer suite will help study planetary processes, while the Lunar Dielectric Analyzer (LDA) will aid in understanding the character and origin of lunar polar volatiles. The third main science objective will investigate how to mitigate the risks of human exploration, and to that end the Lunar Effects on Agricultural Flora (LEAF) instrument will investigate the lunar surface environment’s effects on space crops to see if the lunar regolith can be used to grow food.  

Artist’s concept of an Artemis astronaut deploying an instrument on the lunar surface. Credits: NASA

Falling under the planetary science goals with the two instruments, scientists have laid out four main objectives, which are designed to be “site agnostic,” so that they can be performed at any landing site, or be able to be modified to fit with any future chosen landing site.

  • A. Understand the Early Evolution of the Moon as a Model for Rocky Planet Evolution

The main objective here is to evaluate the leading theory of the Moon’s early days, which is the Lunar Magma Ocean (LMO) theory. It is theorized that a layer of molten rock was present on the surface of the Moon from the time of the Moon’s formation (about 4.5 or 4.4 billion years ago) to tens or hundreds of millions of years after that time, which led to the formation of the crust, mantle, and core. While the LMO model is supported by many observations, it is not supported by all.

The scientists said gathering samples from the Moon’s polar region and comparing the ages and chemical and isotopic compositions of the new samples to those collected by the Apollo astronauts will help to evaluate the current LMO model and perhaps “find alternate or more complex LMO models.” Scientists would also like to determine the composition of the lower crust, and mantle materials if possible.

Artist’s impression of the impact that caused the formation of the Moon. Credit: NASA/GSFC

Another theory that scientists hope to put under scrutiny during the Artemis program is the giant impact hypothesis. This is the most widely accepted theory for the origin of the Earth–Moon system, which proposes the Moon formed during a collision between the Earth and another small planet, about the size of Mars. The debris from this impact collected in an orbit around Earth to form the Moon. However, similarities between the Earth and Moon don’t quite fit that model, the majority of the Moon’s material should originate from the impactor. “The Artemis III samples will allow new assessments of the formation process and age of the Moon,” the scientists wrote.

  • B. Determine the Lunar Record of Inner Solar System Impact History.

Impacts played a big role in the early history of our Solar System, and scientists say they would like to determine the age of South Pole Aitken (SPA) Basin, the oldest known lunar impact basin. “This will provide key new information for determining when the record of bombardment starts and how complete that early record is,” the scientists wrote. They also hope to determine the sources of early impactors, which will provide a fundamental benchmark for understanding the ages of surfaces across the Solar System.

Scientists would also like to gather data to test the Lunar Cataclysm Hypothesis, a theory that says an intense period of bombardment occurred on the Moon about 3.9 billion years ago, where about 80% of the Moon was “resurfaced,” with the formation of approximately 1,700 craters 100 kilometers in size or larger.  This hypothesis is controversial, but determining if this period of bombardment did occur would help scientists determine if a similar cataclysmic bombardment may have affected life on Earth or been involved in life’s origins.

For the two above goals, the Lunar Environment Monitoring Station (LEMS) will carry out continuous, long-term monitoring of the seismic environment, namely ground motion from moonquakes, in the lunar south polar region. This instrument is expected to operate for at least three months and up to two years and may become a key station in a future global lunar geophysical network. NASA said the instrument will characterize the regional structure of the Moon’s crust and mantle, providing valuable information to analyze the current lunar formation and evolution models.

  •  C & D: Determine the Variability of Regolith in the Circumpolar Environment as a Keystone for Understanding Surface Modification of Airless Bodies, and Reveal the Age, Origin, and Evolution of Solar System Volatiles

The Moon’s poles – and especially the permanently shadowed regions – have been compared to an attic in an old house, because it likely contains a record of history. On the Moon, the “attic-like” regions near the poles would still hold the exogenous material delivered to the inner Solar System. Since the terrestrial record of the early Earth is largely lost, finding it on the Moon would be extremely valuable.  

A map showing the permanently shadowed regions (blue) that cover about 3 percent of the moon’s south pole. Credit: NASA Goddard/LRO mission

“Little is known about cold-trapped volatile composition, abundance, age, and the general ability of the Moon to retain volatiles over time,” the scientists wrote. “….Assessing volatiles in cold traps of varying thermal environments and age will provide key new observations to understand their nature.”

And there’s also growing evidence for the presence of lunar polar volatiles like water, hydrogen, and methane, which would be extremely important for future long-term habitation on the Moon. Scientists also want to study how volatiles might be transported across the lunar surface, as such transport has yet to be measured on the Moon, and how it might occur – whether it driven by diurnal temperature changes, solar wind or and micrometeoroid delivery across the Moon.

The Lunar Dielectric Analyzer (LDA) will help in these studies as it will measure the regolith’s ability to propagate an electric field, which is a key parameter in the search for lunar volatiles, especially ice. It will gather essential information about the structure of the Moon’s subsurface, monitor dielectric changes caused by the changing angle of the Sun as the Moon rotates, and look for possible frost formation or ice deposits.

“These three scientific instruments will be our first opportunity since Apollo to leverage the unique capabilities of human explorers to conduct transformative lunar science,” said Joel Kearns, deputy associate administrator for exploration in NASA’s Science Mission Directorate in Washington. “These payloads mark our first steps toward implementing the recommendations for the high-priority science outlined in the Artemis III Science Definition Team report.”

With the Artemis program, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon, and with the goal of establishing long-term exploration for scientific discovery and preparation for human missions to Mars for the benefit of all.

For more details, you can read the Planetary Science Goals and Objectives for Artemis III Surface Activities document here, and the Artemis III Science Definition Team Report.

The post NASA Reveals its Planetary Science Goals for Artemis III appeared first on Universe Today.

Categories: Astronomy

Antibody therapy makes the immune systems of old mice young again

New Scientist Space - Cosmology - Wed, 03/27/2024 - 12:00pm
A novel antibody therapy makes the immune system of old mice appear younger, allowing the animals to better fend off infections and reduce inflammation
Categories: Astronomy

Antibody therapy makes the immune systems of old mice young again

New Scientist Space - Space Headlines - Wed, 03/27/2024 - 12:00pm
A novel antibody therapy makes the immune system of old mice appear younger, allowing the animals to better fend off infections and reduce inflammation
Categories: Astronomy